(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
division(x, y) → div(x, y, 0')
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0') → s(0')
inc(s(x)) → s(inc(x))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
division(x, y) → div(x, y, 0')
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0') → s(0')
inc(s(x)) → s(inc(x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
div,
lt,
inc,
minusThey will be analysed ascendingly in the following order:
lt < div
inc < div
minus < div
(6) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, div, inc, minus
They will be analysed ascendingly in the following order:
lt < div
inc < div
minus < div
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
inc, div, minus
They will be analysed ascendingly in the following order:
inc < div
minus < div
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s3_0(
n282_0)) →
gen_0':s3_0(
+(
1,
n282_0)), rt ∈ Ω(1 + n282
0)
Induction Base:
inc(gen_0':s3_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_0':s3_0(+(n282_0, 1))) →RΩ(1)
s(inc(gen_0':s3_0(n282_0))) →IH
s(gen_0':s3_0(+(1, c283_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n282_0)) → gen_0':s3_0(+(1, n282_0)), rt ∈ Ω(1 + n2820)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, div
They will be analysed ascendingly in the following order:
minus < div
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n492_0),
gen_0':s3_0(
n492_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n492
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
minus(gen_0':s3_0(+(n492_0, 1)), gen_0':s3_0(+(n492_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n492_0), gen_0':s3_0(n492_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n282_0)) → gen_0':s3_0(+(1, n282_0)), rt ∈ Ω(1 + n2820)
minus(gen_0':s3_0(n492_0), gen_0':s3_0(n492_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n4920)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
div
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(17) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n282_0)) → gen_0':s3_0(+(1, n282_0)), rt ∈ Ω(1 + n2820)
minus(gen_0':s3_0(n492_0), gen_0':s3_0(n492_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n4920)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n282_0)) → gen_0':s3_0(+(1, n282_0)), rt ∈ Ω(1 + n2820)
minus(gen_0':s3_0(n492_0), gen_0':s3_0(n492_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n4920)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n282_0)) → gen_0':s3_0(+(1, n282_0)), rt ∈ Ω(1 + n2820)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
division(
x,
y) →
div(
x,
y,
0')
div(
x,
y,
z) →
if(
lt(
x,
y),
x,
y,
inc(
z))
if(
true,
x,
y,
z) →
zif(
false,
x,
s(
y),
z) →
div(
minus(
x,
s(
y)),
s(
y),
z)
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
inc(
0') →
s(
0')
inc(
s(
x)) →
s(
inc(
x))
Types:
division :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
inc :: 0':s → 0':s
true :: true:false
false :: true:false
s :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)